Core–Shell Plasmonic Nanohelices
نویسندگان
چکیده
We introduce core-shell plasmonic nanohelices, highly tunable structures that have a different response in the visible for circularly polarized light of opposite handedness. The glass core of the helices is fabricated using electron beam induced deposition and the pure gold shell is subsequently sputter coated. Optical measurements allow us to explore the chiral nature of the nanohelices, where differences in the response to circularly polarized light of opposite handedness result in a dissymmetry factor of 0.86, more than twice of what has been previously reported. Both experiments and subsequent numerical simulations demonstrate the extreme tunability of the core-shell structures, where nanometer changes to the geometry can lead to drastic changes of the optical responses. This tunability, combined with the large differential transmission, make core-shell plasmonic nanohelices a powerful nanophotonic tool for, for example, (bio)sensing applications.
منابع مشابه
The influence of shell thickness of Au@TiO2 core-shell nanoparticles on the plasmonic enhancement effect in dye-sensitized solar cells.
Plasmonic core-shell nanoparticles (PCSNPs) can function as nanoantennas and improve the efficiency of dye-sensitized solar cells (DSSCs). To achieve maximum enhancement, the morphology of PCSNPs needs to be optimized. Here we precisely control the morphology of Au@TiO2 PCSNPs and systematically study its influence on the plasmonic enhancement effect. The enhancement mechanism was found to vary...
متن کاملSynthesis and Properties of Magnetic-Optical Core-Shell Nanoparticles.
Due to their high integrity, facile surface chemistry, excellent stability, and dual properties from the core and shell materials, magnetic-plasmonic core-shell nanoparticles are of great interest across a number of science, engineering and biomedical disciplines. They are promising for applications in a broad range of areas including catalysis, energy conversion, biological separation, medical...
متن کاملDensely packed aluminum-silver nanohelices as an ultra-thin perfect light absorber
Metals have been formed into nanostructures to absorb light with high efficiency through surface plasmon resonances. An ultra-thin plasmonic structure that exhibits strong absorption over wide ranges of wavelengths and angles of incidence is sought. In this work, a nearly perfect plasmonic nanostructure is fabricated using glancing angle deposition. The difference between the morphologies of ob...
متن کاملIntrinsically core-shell plasmonic dielectric nanostructures with ultrahigh refractive index.
Topological insulators are a new class of quantum materials with metallic (edge) surface states and insulating bulk states. They demonstrate a variety of novel electronic and optical properties, which make them highly promising electronic, spintronic, and optoelectronic materials. We report on a novel conic plasmonic nanostructure that is made of bulk-insulating topological insulators and has a...
متن کاملHot-Volumes as Uniform and Reproducible SERS-Detection Enhancers in Weakly-Coupled Metallic Nanohelices
Reproducible and enhanced optical detection of molecules in low concentrations demands simultaneously intense and homogeneous electric fields acting as robust signal amplifiers. To generate such sophisticated optical near-fields, different plasmonic nanostructures were investigated in recent years. These, however, exhibit either high enhancement factor (EF) or spatial homogeneity but not both. ...
متن کامل